Modeling decisions

Note: many slides based on talk by Phil Holmes, Princeton

Moving dots decision task: Left or right?

Example of two-alternative decision task
Newsome, Movshon, Zohary, Shadlen, Gold, Britten ... '90s and '00s

- Behavioral measures: reaction time (RT) distribution, error rate (ER).
- Neural measures: fMRI (humans), direct recordings in visual processing and motor areas (monkeys: MT, LIP, FEF).

Statistical hypothesis testing: discrimination among alternatives

Hypothesis 1 - leftward dots
Hypothesis 2 - rightward dots

Consider increments of time $\Delta \mathrm{t}_{\mathrm{i}}$

$\mathrm{W}_{\mathrm{i}}=$ random string drawn from 2 distributions $\mathrm{P}_{1}(\mathrm{w}), \mathrm{p}_{2}(\mathrm{w})$ representing i th increment of evidence for hypotheses 1,2 resp.
e.g. $W_{i}=$ 'fraction of right-going dots observed" over Δt_{i}

Task: given \{w_i\}, Was hyp. 1or 2 true?

Statistical hypothesis testing: discrimination among alternatives

Hypothesis 1 - leftward dots
Hypothesis 2 - rightward dots

Partial (optimal) solution to "static" problem:
Max. likelihood based on a 'single' time interval
e.g. $w_{i}=$ 'fraction of right-going dots observed" over Delta t_{i}

What about the DYNAMIC problem: decision?

Consider increments of time $\Delta \mathrm{t}_{\mathrm{i}}$

$\mathrm{w}_{\mathrm{i}}=$ random string drawn from 2 distributions $\mathrm{p}_{1}(\mathrm{w}), \mathrm{p}_{2}(\mathrm{w})$ representing i^{\prime} th increment of evidence for hypotheses 1,2 resp.

SEQUENTIAL PROBABILITY RATIO TEST (SPRT): Wald, 1947 See review, Gold and Shadlen 2001
Consider the likelihood ratio

$$
R_{n}=\prod_{i=1}^{n} \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)}
$$

SPRT: Fix thresholds. $Z_{1}<1<Z_{2}$ and continue observing as long as

$$
\mathrm{Z}_{1}<\mathrm{R}_{\mathrm{n}}<\mathrm{Z}_{2} .
$$

As soon as

$$
\begin{aligned}
R_{n} \leq \mathrm{Z}_{1} \Rightarrow & \text { declare hyp } 1 \text { true } \\
& \text { or } \\
R_{n} \geq \mathrm{Z}_{2} \Rightarrow & \text { declare hyp } 2 \text { true. }
\end{aligned}
$$

"Random walk"

$$
R_{n}=\prod_{i=1}^{n} \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)}
$$

SPRT: Fix thresholds. $Z_{1}<1<Z_{2}$ and continue observing as long as

$$
\mathrm{Z}_{1}<\mathrm{R}_{\mathrm{n}}<\mathrm{Z}_{2} .
$$

As soon as

$$
\begin{aligned}
R_{n} \leq \mathrm{Z}_{1} \Rightarrow & \text { declare hyp } 1 \text { true } \\
& \text { or } \\
R_{n} \geq \mathrm{Z}_{2} \Rightarrow & \text { declare hyp } 2 \text { true. }
\end{aligned}
$$

Let $E_{j}(N)=$ expected no. obs needed to declare hyp j true with specified error probabilities $a_{j}, j=1,2$.

Theorem (Wald, Barnard) Among all fixed sample or sequential tests, SPRT with error probabilities a_{j} minimises $E_{j}(N)$.

There are formulae for $\mathbf{Z}_{\mathbf{j}}$ in terms of a_{j}.

Take logarithm to make SPRT an 'additive' test in time

$$
\begin{aligned}
x_{n} & =\log \left(R_{n}\right)=\log \prod_{i=1}^{n} \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)} \\
& =\sum \log \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)}=\sum \delta I_{i}
\end{aligned}
$$

E.g. If $p_{j} \backslash$ are normal distributions,

$$
\mathrm{p}_{\mathrm{j}}(\mathrm{w})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[\frac{-\left(\mathrm{w}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right]
$$

a short calculation shows that:

$$
\begin{gathered}
E\left(\delta I_{i}\right)=:\left(\mu_{1}-\mu_{2}\right)^{2} / \sigma^{2} \stackrel{\text { def }}{=} A, \text { if } \mathrm{w}_{1} \text { drawn from } p_{1} \text {, (opposite sign if from } \mathrm{p}_{2} \text {) } \\
\operatorname{Var}\left(\delta I_{i}\right)=\left|\mu_{2}-\mu_{1}\right| \stackrel{\text { def }}{=} D .
\end{gathered}
$$

"Random walk"

Take logarithm to make SPRT an 'additive' test in time

$$
\begin{align*}
x_{n} & =\log \left(R_{n}\right)=\log \prod_{i=1}^{n} \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)} \tag{1}\\
& =\sum \log \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)}=\sum \delta I_{i} \tag{2}
\end{align*}
$$

Take logarithm to make SPRT an 'additive' test in time

$$
\begin{align*}
& x_{n}=\log \left(R_{n}\right)=\log \prod_{i=1}^{n} \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)} \tag{1}\\
& =\sum \log \frac{p_{1}\left(w_{i}\right)}{p_{2}\left(w_{i}\right)}=\sum \delta I_{i} \tag{2}
\end{align*}
$$

E.g. If $p_{j} \backslash$ are normal distributions,

$$
\mathrm{p}_{\mathrm{j}}(\mathrm{w})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[\frac{-\left(\mathrm{w}-\mu_{j}\right)^{2}}{2 \sigma^{2}}\right]
$$

a short calculation shows that:

$$
\begin{gathered}
E\left(\delta I_{i}\right)=:\left(\mu_{1}-\mu_{2}\right)^{2} / \sigma^{2} \stackrel{\text { def }}{=} A, \text { if } w_{i} \text { drawn from } p_{1} \text {, (opposite sign if from } \mathrm{p}_{2} \text {) } \\
\operatorname{Var}\left(\delta I_{i}\right)=\left|\mu_{2}-\mu_{1}\right| \stackrel{\text { def }}{=} D .
\end{gathered}
$$

Continuous time limit of random walk is DRIFT-DIFFUSION MODEL
$\frac{d x}{d t}= \pm A+\sqrt{D} \eta(t) \leftarrow$ noise term
(e.g. "-A" if draw from p_{2}, i.e. hyp. 2)

4.1. Behavioral Evidence for DD process

[Ratcliff, 1978; Ratcliff et al 1999], SPRT Used by Laming 1968. With 5-7 adjustable parameters, can match individual subject RTs well.

4.1. Behavioral Evidence for DD process

[Ratcliff, 1978; Ratcliff et al 1999], SPRT Used by Laming 1968. With 5-7 adjustable parameters, can match individual subject RTs well.

4.1. Behavioral Evidence for DD process

[Ratcliff, 1978; Ratcliff et al 1999], SPRT Used by Laming 1968. With 5-7 adjustable parameters, can match individual subject RTs well.

4.2. Neural Evidence for DD process

LIP and FEF neural spike rates vs. time - evidence for crossing fixed threshold prior to response (saccade).

J. Schall, V. Stuphorn, J. Brown, Neuron, 2002

Neural basis of decisions: Shadlen, Schall, Newsome, Movshon,

 Gold, et al

- ASIDE - where does noise come from?

ABABABBBAB ABABBABABA BBABABABAB BABABABABA BBABBABABA

Neural representation of incoming information fluctuates in time

mechanism 2: stimulus itself fluctuates

30 \% coherent

5% coherent

Bill Newsome

Neural representation of incoming information fluctuates in time

mechanism 3: intrinsic fluctuations due to finite-size effects internal dynamics of neural populations are noisy ...

(AND may be correlated: Zohary et al, Science 1996)

Back to problem at hand ...

Back to problem at hand

$I_{1}=I_{+} \quad(+$ noise)

$I_{2}=I_{\text {. }}$ (+noise)
Time (i)
Would like to interpret as SPRT

w_{i}, increment of input over $\Delta \mathrm{t}_{\mathrm{i}}$
Issue: input is TWO-D.
Follow Gold/Shadlen, TINS 2001 to resolve.

Dynamics?

- Think of neural "units..." described by firing rates y which approach equilibrium rates $f\left(\right.$ input) with time constant τ_{m}.

$$
\tau_{m} \frac{d y}{d t}=-y+f(i n p u t)
$$

Two inhibiting neural populations

Firing rates $\left(y_{1}, y_{2}\right)$ of competing neural pops... approach f(input) with time constant $\tau_{\mathrm{m}}{ }^{\prime}$

$$
\begin{array}{r}
\tau_{m} \frac{d y_{1}}{d t}=-y_{1}+f\left(-\beta y_{2}+I_{1}(t)\right) \\
\tau_{m} \frac{d y_{2}}{d t}=-y_{2}+f\left(-\beta y_{1}+I_{2}(t)\right)
\end{array}
$$

Two-alternative choice task

Firing rates $\left(y_{1}, y_{2}\right)$ of competing neural pops...

Decision 1 or 2 made when firing rate y_{1} or y_{2} crosses threshold

Two-alternative choice task

Firing rates $\left(y_{1}, y_{2}\right)$ of competing neural pops...

Decision 1 or 2 made when firing rate y_{1} or y_{2} crosses threshold

Firing rates $\left(y_{1}, y_{2}\right)$ of competing neural pops...

Linearize:

$$
\begin{array}{lll}
\frac{d y_{1}}{d t}=-y_{1}+g *\left(-y_{2}+I_{1}\right. & \left.1+\eta_{1}\right) \\
d y_{2} & =-y_{2}+g *\left(-y_{1}+I_{2}\right. & \left.1+\eta_{2}\right) \\
d t & \text { Subtract: }
\end{array}
$$

$$
\begin{equation*}
\frac{d \mathrm{x}}{d t}=-\mathrm{x}+g\left(\mathrm{x}+I_{1}-I_{2}\right)+g \eta(t) \tag{1}
\end{equation*}
$$

TUNE GAIN to $g=1$, define drift $A=I_{1}-I_{2}$

$$
\begin{equation*}
\frac{d \times}{d t}=A+\eta(t) \tag{2}
\end{equation*}
$$

recover SPRT, optimal decision strategy

Firing rates $\left(y_{1}, y_{2}\right)$ of competing neural pops...

$$
\begin{equation*}
\frac{d \mathrm{x}}{d t}=-\mathrm{x}+g\left(\mathrm{x}+I_{1}-I_{2}\right)+g \eta(t) \tag{1}
\end{equation*}
$$

TUNE GAIN to $g=1$, define drift $A=I_{1}-I_{2}$

$$
\begin{equation*}
\frac{d \mathrm{x}}{d t}=A+\eta(t) \tag{2}
\end{equation*}
$$

recover SPRT, optimal decision strategy

